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Polarization dependence of X-ray emission spectroscopy
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Abstract

The polarization dependence of X-ray emission spectroscopy (XES) is studied on the angle dependence of incident and emitted X-ray.
The Kramers–Heisenberg formula is employed to describe the optical process. It is shown that the quantum mechanical interference effect
is directly observable in magnetic circular dichroism (MCD) spectra in a special geometrical configuration. It is also shown that by making
use of the linearly polarized X-ray, information on the symmetry of ground states of materials is directly determinable from simple selection
rules. Potential possibilities of X-ray spectrum with a polarized photon are demonstrated.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The study of X-ray emission spectroscopy (XES) has
made remarkable progress in recent years with the use of
high-brilliance synchrotron radiation sources[1]. There is
a great advantage in the X-ray from synchrotron radiation
sources, because of its polarized nature. There has been a
great progress in the study of X-ray spectroscopy, especially
in X-ray absorption spectroscopy (XAS), using linearly and
circularly polarized X-rays in the last decades[2,3]. It is
expected that there is potential possibilities in the study of
XES with polarized X-ray.

In the interpretation of XES, the Kramers–Heisenberg for-
mula [4], which describes a coherent second-order optical
process, have been widely used. A quantum mechanical in-
terference effect is taken into account in this formula. There
has been almost no direct justification for the usage of this
formulation for XES to the authors’ knowledge. It is inter-
esting to evaluate the contribution from the interference ef-
fect separately.

Recent experiments observed a non-vanishing magnetic
circular dichroism (MCD) signal with a geometry of the di-
rection of the incident X-ray is perpendicular to the magnetic
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moment[5–7], where no MCD signal is expected for XAS.
It is a bit surprising because the polarization of the emit-
ted X-ray is not resolved. This implies a need for a model
beyond a combination of two successive independent first
order optical process[8].

In this paper the polarization dependence of XES is stud-
ied from the view point of geometrical symmetry. We show
that the MCD of XES in the above case originates from in-
terference term of coherent second-order process. We also
investigate the case where the incident X-ray is linearly po-
larized.

In the next section a formulation required for the calcu-
lation of XES are presented. InSection 3, results for XES
with polarized X-ray are given and discussed. A different
theoretical approach is also presented to clarify the angle de-
pendence of MCD. In the final section we give concluding
remarks.

2. Formulation

2.1. Wave vector

We assume a photon as a plane wave of wave vector�k
and polarization vector�e. It is convenient to use a photon
energyω = c|�k| and a polar angle(θ, φ) of the direction of
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propagation to specify a photon. Herec is the velocity of
light. The direction of�k is given, in the Cartesian coordinate,
as

�k
|�k| = ( sin θ cosϕ, sin θ sin ϕ, cosθ), (1)

which is in the tensor form,


k
(1)
1 = − 1√

2
sin θeiϕ

k
(1)
0 = cosθ

k
(1)
−1 = 1√

2
sin θe−iϕ

(2)

from the definition of tensor of rank 1,


w
(1)
1 ≡ − 1√

2
(wx + iwy)

w
(1)
0 ≡ wz
w
(1)
−1 ≡ 1√

2
(wx − iwy).

(3)

2.2. Polarization vector

The polarization vector�e is perpendicular to the wave
vector �k, i.e. �e ⊥ �k. Thus there remain two independent
directions in the polarization direction of a photon.

We define a Cartesian coordinate system at the point of�k
with unit vectors of,

k̂r = sin θ cosϕx̂+ sin θ sin ϕŷ + cosθẑ

k̂θ = cosθ cosϕx̂+ cosθ sin ϕŷ − sin θẑ

k̂ϕ = − sin ϕx̂+ cosϕŷ.

(4)

Here k̂r is in the direction of�k.
A circularly polarized photon is designated by helicity

λ = ±1. The polarization vector of a circularly polarized
photon is given in this coordinate as

�e(λ = ±1) = ∓ 1√
2
(0,1,±i). (5)

A linearly polarized photon is designated by polarization
angleθp. If we define that the polarization angle is measured
from the direction of̂kθ, the polarization vector is given as,

�e(θp) = (0, cosθp, sin θp). (6)

Thus the tensor form of these polarization vectors in the
original coordinate are given as,


e
(1)
1 = −1

2(1 ∓ cosθ)eiϕ

e
(1)
0 = ± 1√

2
sin θ

e
(1)
−1 = −1

2(1 ± cosθ)e−iϕ

(7)

for the circularly polarized photon of helicityλ = ±1 and




e
(1)
1 = − 1√

2
( cosθp cosθ + i sin θp)eiϕ

e
(1)
0 = − cosθp sin θ

e
(1)
−1 = 1√

2
( cosθp cosθ − i sin θp)e−iϕ

(8)

for the linearly polarized photon of polarization angleθp.

2.3. Transition operator

The perturbation treatment is appropriate for the descrip-
tion of the interaction between electronic system and the
X-ray from synchrotron radiation sources. The perturbation
operator for photo absorption transition is expressed in the
non-relativistic limit,

T ∝ �e · �rei�k·�r ∼ �e · �r(1 + i�k · �r + · · · ). (9)

This expansion is valid in the long wavelength limit. In this
expansion, the first term gives dipole transition operator and
the second term quadrupole transition operator.

We define the dipole transition operator for photon ab-
sorbing process as

T (1)a ≡ �e · �r (10)

= r
1∑

q=−1

(−)qe(1)−qC
(1)
q . (11)

The dipole transition operator for photon emitting process
is given as Hermite conjugate ofT (1)a .

T (1)e ≡ (T (1)a )† (12)

= r
1∑

q=−1

(−)qē(1)−qC
(1)
q , (13)

whereē is defined as,

ē(1)q ≡ (−)qe(1)∗−q . (14)

The superscript symbols † and∗ represent Hermite and com-
plex conjugate, respectively.

The quadrupole transition operator for absorption process
is defined as,

T (2)a ≡ (�e · �r)(�k · �r) (15)

= r2
2∑

q=−2

(−)q
√

2

3
[ek](2)−qC

(2)
q , (16)

the transformation from the first to the second line is given
in the Appendix A. The symbol [vw](k)q represents tensor
product and is defined as,

[vw](k)q ≡
∑

q1+q2=q
v(k1)q1

w(k2)q2
〈k1k2q1q2|kq〉, (17)

where 〈k1k2q1q2|kq〉 is a Clebsch-Gordan symbol. The
quadrupole transition operator for emission process is also
given as the Hermite conjugate of the absorption operator.
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2.4. Spectral function

We adopt a quantum mechanically coherent second-order
optical model, i.e. Kramers–Heisenberg formula, to describe
the X-ray emission spectroscopy. The spectral function of
XES is given as

F(ω2, ω1)=
∑
f

∣∣∣∣∣
∑
i

〈f |T2|i〉〈i|T1|g〉
Ei − Eg − h̄ω1 − iΓi

∣∣∣∣∣
2

×δ(Ef − Eg + h̄ω2 − h̄ω1), (18)

where|g〉, |i〉 and|f 〉 are the ground, intermediate and final
states with energiesEg, Em andEf , respectively,Γi rep-
resents the finite life time effect of the intermediate state,
ω specifies photon energies, and the subscripts 1 and 2 dis-
criminate incident and emitted process, respectively. The pa-
rameters to specify photon besides the photon energy (θ, ϕ

andλ or θp) is implicitly included inT .
In the case of XES,T1 is an absorption operator andT2

is an emission operator. Because this formula is general ex-
pression for a coherent second-order optical process, it is ap-
plicable to other two-photon processes such as a two-photon
absorption (T1 and T2 are both absorption operators) or a
two-photon emission process (T1 andT2 are both emission
operators).

2.5. Magnetic circular dichroism

The magnetic circular dichroism is defined as a difference
between two spectrums for different photon helicities. We
define MCD for XES (�F ) as a difference between two
spectrum of two different incident photons with helicityλ =
−1 andλ = +1. Here we sum up on the helicities of the
emitted photon. The MCD of XES is then written as

�F ≡ (F+1−1 + F−1−1)− (F+1+1 + F−1+1), (19)

where the helicity of photons are written down explicitly as
Fλ2λ1. The indicesλ1 andλ2 specify the helicities for the
incident and the emitted photon, respectively.

From the theoretical point of view, there is no inevitable
reason to sum up on the emitted photon. It is possible to
define MCD either onλ1 or λ2.

2.6. Two geometrical configurations for the linearly
polarized X-ray

When considering a linearly polarized X-rays in XES,
there are two special geometrical configurations, known as
polarized geometry and depolarized geometry. Polarized
configuration is defined as geometry where the polarization
vector of the incident X-ray is perpendicular to the scatter-
ing plane. Depolarized configuration is defined as geometry
where the polarization vector of the incident X-ray lies
within the scattering plane. Here a scattering plane is de-
fined as a plane spanned by the wave vectors of the incident
photon�k1 and the emitted photon�k2.

3. Results

3.1. MCD of XES

In this subsection we discuss the MCD of XES of the
dipole transitions in spherical symmetry under the condition
that the magnetic moment lies in thez-direction (the quan-
tization axis). In this case the spectral function is written as

F(ω2, ω1)=
∑
f

∑
�Q

∣∣∣∣∣∣
∑

q1+q2=�Q
(−)q1+q2e

(1)
−q2
e
(1)
−q1
f (1,1)q2,q1

∣∣∣∣∣∣
2

×δ(Ef − Eg + h̄ω2 − h̄ω1), (20)

where the symbolf (l2,l1)q2,q1 is defined as

f (l2,l1)q2,q1
≡
∑
i

〈f |C(l2)q2 |i〉〈i|C(l1)q1 |g〉
Ef − Eg − h̄ω1 − iΓi . (21)

The subscript index 1 and 2 designate the absorbing and the
emitting process, respectively.

Under the spherical symmetry the quantum mechanical
interference may occur within the states of the same�Q.
The terms for each�Q are


ē
(1)
−1e

(1)
−1f

(1,1)
1,1 , (�Q = 2)

−ē(1)−1e
(1)
0 f

(1,1)
1,0 − ē(1)0 e

(1)
−1f

(1,1)
0,1 , (�Q = 1)

ē
(1)
−1e

(1)
1 f

(1,1)
1,−1 + ē(1)0 e

(1)
0 f

(1,1)
0,0

+ē(1)1 e
(1)
0 f

(1,1)
−1,1 , (�Q = 0)

−ē(1)1 e
(1)
0 f

(1,1)
−1,0 − ē(1)0 e

(1)
1 f

(1,1)
0,−1 , (�Q = −1)

ē
(1)
1 e

(1)
1 f

(1,1)
−1,−1, (�Q = −2).

(22)

Inserting the explicit expressions into the polarization vec-
tors ē ande after Eq. (7)and making addition and subtrac-
tion after the definitionEq. (19), we obtain a formula for
MCD as

�F = − cosθ1
{

1
2(1 + cos2 θ2)(|f11|2 + |f−11|2

− |f1−1|2 − |f−1−1|2)+ sin2 θ2(|f01|2 − |f0−1|2)
}

− 1
4 sin θ1{ sin 2θ2(f

∗
10f01 + f ∗

01f10 + f ∗
1−1f00

+ f ∗
00f1−1 − f ∗

−10f0−1 − f ∗
0−1f−10

− f ∗
−11f00 − f ∗

00f−11)}, (23)

where the symbolfq2q1 is defined as

fq2q1 ≡ e−iq2ϕ2e−iq1ϕ1f (1,1)q2,q1
. (24)

The first term proportional to cosθ1 originates only from the
diagonal term and has the same incident angle dependence as
the XAS. The second term proportional to sinθ1 originates
only from the off-diagonal interference term. The first term
meets with the intuitive two-step model and we can guess
the cosθ1 dependence originates from the exciting step,
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while the second term is unexpected from intuitive model
and purely a quantum mechanical effect.

If the incident photon is parallel to the magnetic moment
(θ1 = 0), the interference term vanishes, while if it is per-
pendicular to the magnetic moment (θ1 = π/2), only the
interference term remains. The non-vanishing MCD are ob-
served experimentally and the angle dependence both for
theθ1 andθ2 are also reproduced fairly well. This is a direct
justification of the use of the Kramers–Heisenberg formula
for XES.

3.2. Fundamental spectrum

In the expression above on the MCD of XES (�F ), the
angle dependence suggest the some symmetry relation be-
hind it. The dependence on the incident angleθ1 corresponds
to thep symmetry, while the dependence on the emitting
angleθ2 suggest thed symmetry.

In this subsection we derive the expression for MCD again
with different view point by means of fundamental spectrum
proposed by Thole and van der Laan[9]. We define a new
tensor operatorIl(k)q as

Il(k)q ≡
∑
q1,q2

(−)1−q1

(
l k l

−q1 q q2

)
C(l)∗q1

C(l)q2

×
(
l k l

−l 0 l

)−1

, (25)

where the bracket represents 3j-symbol andC(l)q renormal-
ized spherical tensor.

We start from the special case where the incident and the
emitted photon are parallel to thez-axis. In this geometry,
the MCD operator is written as

(C
(1)
−1)

∗C(1)−1 − (C(1)+1)
∗C(1)+1 = −I1(1)

0 , (26)

where the normalized spherical tensors are supposed to be
applied on the appropriate states. The sum over the polar-
ization of the emitting photon is written as

(C
(1)
−1)

∗C(1)−1 + (C(1)+1)
∗C(1)+1 = 1

3(2I
1(0)
0 + I1(2)

0 ). (27)

The operator for MCD of XES in this special geometry is
written with these relations as

�F = −1
3(2I

1(0)
0 + I1(2)

0 )I
1(1)
0 . (28)

By making use of a property of the spherical harmonics

I
l(k)
0 =

∑
q

(−1)qC(k)q I
l(k)
q , (29)

the operator for the general direction is derived as

�F = −1
3(2C

(0)
0 I

1(0)
0 + C(2)0 I

1(2)
0 )C

(1)
0 I

1(1)
0

− 1
3(C

(2)
−1I

1(2)
−1 C

(1)
+1I

1(1)
+1 + C(2)+1I

1(2)
+1 C

(1)
−1I

1(1)
−1 ). (30)

Inserting explicit expressions in this formula, we obtain

�F = − cosθ1
{

1
2(1 + cos2 θ2)(c

∗
1c1 + c∗−1c−1)

×(c∗1c1 − c∗−1c−1)+ sin2 θ2c
∗
0c0(c

∗
1c1 − c∗−1c−1)

}
+ 1

4 sin θ1 sin 2θ2{e−i(ϕ2−ϕ1)(c∗0c1 − c∗−1c0)

×(c∗0c−1 + c∗1c0)− ei(ϕ2−ϕ1)(c∗0c−1 − c∗1c0)
×(c∗0c1 + c∗−1c0)}, (31)

wherecq is an abbreviation ofC(1)q .
When this operator is applied to appropriate states, we

reproduce the result in the previous subsection as

�F = − cosθ1
{

1
2(1 + cos2 θ2)(|f11|2 + |f−11|2 − |f1−1|2

− |f−1−1|2)+ sin2 θ2(|f01|2 − |f0−1|2)
}

−1
4 sin θ1 sin 2θ2{e−i(ϕ2−ϕ1)(f ∗

00f1−1 + f ∗
01f10

−f ∗
−10f0−1 − f ∗

−11f00)− ei(ϕ2−ϕ1)(f ∗
00f−11

+f ∗
0−1f−10 − f ∗

10f01 − f ∗
1−1f00)}. (32)

From these expressions the origin of the symmetry of the
angle dependence is clearly understood. Thep-symmetry
of the incident angleθ1 is the direct consequence of the
MCD operatorI1(1)

q . The angle dependence on the emitted
photonθ2 is a linear combination of thes andd symmetry
for the diagonal term while the angle dependence is only
from the termI11(2)

±2 and thus have pured-symmetry for the
interference term.

3.3. MCD of quadrupole excitation

We apply the method in the previous subsection to the
quadrupole excitation. Here it is assumed that the excitation
is expressed by quadrupole transition operator, while the
emitting process remains the same dipole transition.

The MCD operator for the quadrupole transition is derived
as

(C
(2)
−1)

∗C(2)−1 − (C(2)+1)
∗C(2)+1 = −2

5(I
2(1)
0 − I2(3)

0 ). (33)

The MCD operator for thez-direction is written as

�F = − 2
15(2I

1(0)
0 + I1(2)

0 )(I
2(1)
0 − I2(3)

0 ). (34)

The operator for arbitrary direction is

�F = − 2
15(2C

(0)
0 I

1(0) + C1(2)
0 I

(2)
0 )(C

(1)
0 I

2(1)
0 − C(3)0 I

2(3)
0 )

− 2
15(C

(2)
−1I

1(2)
−1 (C

(1)
1 I

2(1)
1 − C(3)1 I

2(3)
1 )

+C(2)1 I
1(2)
1 (C

(1)
−1I

2(1)
−1 − C(3)−1I

2(3)
−1 ))

+ 2
15(C

(2)
−2I

1(2)
−2 C

(3)
2 I

2(3)
2 + C(2)2 I

1(2)
2 C

(3)
−2I

2(3)
−2 ). (35)
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Inserting explicit expressions in this formula, we obtain

�F = 1
2[ sin 2θ1{(1 + cos2 θ2)(|f1−2|2 + |f−1−2|2
− |f−12|2 − |f−12|2)+ 2 sin2 θ2(|f0−2|2 − |f02|2)}
+ cos 2θ1{(1 + cos2 θ2)(|f1−1|2 + |f−1−1|2
−|f11|2 − |f−11|2)+ 2 sin2 θ2(|f0−1|2 − |f01|2)}]
+ 1

4
sin θ1

[√
3cos2 θ1 sin 2θ2{e−i(ϕ2−ϕ1)(f ∗

01f10

+f ∗
00f1−1 − f ∗

−10f0−1 − f ∗
−11f00)+ ei(ϕ2−ϕ1)

×(f ∗
10f01 + f ∗

1−1f00 − f ∗
0−1f−10 − f ∗

00f−11)}
−
√

1
2(cos2 θ1 + cos 2θ1) sin 2θ2 × {e−i(ϕ2−ϕ1)

×(f ∗
02f11 + f ∗

0−1f1−2 − f ∗
−12f01 − f ∗

−1−1f0−2)

+ ei(ϕ2−ϕ1)(f ∗
11f02 + f ∗

1−2f0−1 − f ∗
01f−12

− f ∗
0−2f−1−1)} −

√
3
2 sin 2θ1 sin2 θ2{e−2i(ϕ2−ϕ1)

× (f ∗
−12f10 − f ∗

−10f1−2)+ e2i(ϕ2−ϕ1)

×(f ∗
10f−12 − f ∗

1−2f−10)}
]
. (36)

This reproduces the result by Fukui et al.[7]. The angle
dependence is different for each�Q and the origin of the
symmetrical properties of the angle dependence is clear.

3.4. Depolarized configuration

In this subsection we discuss a special characteristic of the
depolarized configuration for the linearly polarized X-ray
[13]. We restrict ourselves to the case where thez-axis,
which is assumed as the direction of quantization, is in the
scattering plane. The polarization angleθp of the polarized
configuration isπ/2 and that of the depolarized configuration
is 0. The polarization vector is written as


e
(1)
1 = − 1√

2
cosθeiϕ

e
(1)
0 = − sin θ

e
(1)
−1 = 1√

2
cosθe−iϕ.

(37)

When this polarization vector is multiplied by a polarization
vector of emitted photon with an arbitrarily polarization an-
gle, the term with the total magnetic momentum change of
zero (q1 + q2 = 0) becomes

ē
(1)
−1e

(1)
1 + ē(1)0 e

(0)
1 + ē(1)−1e

(1)
1 = − cosθp

2 cos(θ2 − θ1).
(38)

It is easily seen that this term will vanish regardless of the
polarization angleθp2 if the scattering angle|θ2−θ1| is equal
to π/2.

From this finding it is concluded that with the depolar-
ized configuration the initial state|g〉 and the final state|f 〉

cannot have an identical magnetic quantum number under
spherical symmetry. This implies that the elastic scattering
is forbidden when the initial state is non-degenerate as in
the case of|J = 0,M = 0〉.

This characteristic of depolarized geometry is also appli-
cable to lower symmetrical systems in somewhat restricted
form. In the case of octahedral symmetry, it is deduced that
if the elastic line vanishes for the depolarized configuration
the initial state is eitherA1 or A2 [10–12].

4. Concluding remarks

In the present paper we gave a general expression for the
MCD of RXES for arbitrary directions of incident and emit-
ted X-ray photons from geometrical arguments. It was shown
that the non-vanishing MCD originates from the quantum
mechanical interference effect, when the incident photon is
perpendicular to the magnetic moment. The result was also
derived using the idea of fundamental spectrum. The angle
dependence of MCD was directly obtained from the sym-
metry of spherical tensors. The angle dependence of the in-
cident and the emitted photons in the present theory is ob-
served in the experiment[6,7].

It is also shown that with the linearly polarized incident
X-ray in the depolarized configuration, the elastic scatter-
ing is forbidden when the ground state is not degenerate
from the symmetry selection rule. Using the selection rule
of XES with linearly polarized X-ray, it is possible to deter-
mine the symmetry of the ground state and the excited states
nearby from the angle dependence of XES. This relations
have been explored on the 4f rare-earth and 5f actinides sys-
tems[13] and 3d transition metal systems as well[10–12,
14].

These facts directly justify the use of the Kramers–
Heisenberg formula to describe the X-ray emission spec-
troscopy. The present result is general and applicable to
similar second-order optical processes such as two-photon
absorption and two-photon emission[15]. In the present pa-
per some of the potential possibilities of X-ray spectroscopy
using polarized X-ray are demonstrated.
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Appendix A

The quadrupole transition operator can be expressed in
the tensor form as,

(�e · �r)(�k · �r) = 3[[er](0)[kr](0)](0)0 . (A.1)
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By recoupling the vectors,

[[er](0)[kr](0)](0)0 =
∑
K

(2K + 1)




1 1 0

1 1 0

K K 0




×[[ek](K)[rr ](K)](0)0 (A.2)

=
∑
K

√
2K + 1

3
[[ek](K)[rr ](K)](0)0 . (A.3)

The terms forK = 0 andK = 1 vanish by the conditions
�e · �k = 0 and�r × �r = 0, respectively. Using the property of
spherical tensor,

[C(k1)q1
C(k2)q2

](K)Q = (−)K√
2K + 1

{
k1 k2 K

0 0 0

}
C
(K)
Q ,

(A.4)

the expression [rr ](2)q is reduced to

[rr ](2)q =
√

2

3
r2C(2)q . (A.5)

Hence the quadrupole operator is

(�e · �r)(�k · �r) =
√

5[[ek](2)
√

2

3
r2C(2)](0)0 (A.6)

= r2
∑
q

(−)q
√

2

3
[ek](2)−qC

2
q. (A.7)
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